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Transition among synchronized states mediated by attractor-repeller collision crisis
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We studied the transition from a single-value generalized synchronization state to a double-value one in a
unidirectionally coupled two-dimensional map system. It is found that this discontinuous transition is mediated
by the attractor-repeller collision crisis and is different from the blowout bifurcation in many respects. By using
the unstable periodic orbits decomposition method, it is shown that the attractor is generally nondifferential in
the parameter regime about the transition. Based on the nondifferential character of the attractor, we propose a
mechanism for the attractor-repeller collision crisis.
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Synchronization of mutually coupled units is found abu
dant in natural situations such as flashing of fire flies@5#,
pacemaker cells of the heart@6#, etc., and laboratory studie
such as laser dynamics@7#, electric circuits@8#, chemical
reactions@1#, and secret communication@2#. In the past de-
cades study on chaotic synchronization@3,4# attracted a lot
of research interest and became one of the hottest subfi
of nonlinear dynamics.

In the literature, the transition from a synchronized st
to a desynchronized one, named blowout bifurcation@9#, is
already well studied. It is found that, about this symmet
breaking bifurcation@10#, interesting phenomenon includin
on-off intermittency@11#, riddled basin of attraction@12#,
and unstable dimension variability@13# appear. On the othe
hand, another transition frequently met in synchronizat
study is nearly ignored, i.e., the transition between synch
nized states@14,15#. For this case, the synchronous manifo
is transversely stable on both sides of the transition. Th
fore, it should be totally different from the synchronizatio
desynchronization transition, which takes place when
synchronous manifold loses its transverse stability.

In this paper, we show a transition from a single-val
generalized synchronization state to a double-value one@16#
in a unidirectionally coupled map system. By using the u
stable periodic orbit decomposition method@17#, it is shown
that the attractors are nondifferential about the transiti
Owing to the nondifferential character, a different scenario
the attractor-repeller collision crisis, from the one reported
@18,19#, is proposed. We argue that this scenario is gen
for transitions among chaotic states.

Our system is the parametrically driven logistic map

xn115m f ~xn!,
~1!

yn115z~xn! f ~yn!,

where f (x)5x(12x), z(x)5(ax1b), m53.9999,a, and
b are positive real constants. In the zero-coupling limita
→0, they subsystem is decoupled from the chaotic drivi
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xn and it exhibits a cascade of period-doubling bifurcatio
on increasing parameterb. It is expected that with weak cou
pling, there should be a certain transition corresponding
the period-doubling bifurcation. For the simplicity of illus
tration, here we focus our attention on the parameter reg
about the first period-doubling bifurcation. The same mec
nism should work at all the other period-doubling bifurc
tions. In a former study on a randomly driven system
found that the period-doubling bifurcation is replaced by
crisis @20# named tunnel crisis@14#. For the current chaoti-
cally driven case, the complex internal structure of the dr
ing signal, i.e., the large number of unstable periodic orb
embedded in the chaotic attractor@17#, makes the dynamics
richer and interesting.

We first calculate the bifurcation diagram ofyn with a
50.3 ~Fig. 1!. On increasing the parameterb, a one-band
attractor bifurcates to a two-band one at a certain value ob.
As a standard method used in the study of generalized
chronization, we study an ensemble of identicaly subsystems
driven by the same chaotic signalxn . Below the bifurcation,
an ensemble of identicaly subsystems starting from differen
initial conditions@21# collapse to a single trajectory finally
although they behave chaotically with time going on. This
the single-value generalized synchronization state. Bey
the bifurcation, the large number of identicaly subsystems

FIG. 1. ~a! The bifurcation diagram ofyn with a50.3; ~b! the
single-value synchronized state atb52.9, and~c! the double-value
synchronized state atb53.1.
©2002 The American Physical Society13-1
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split into two subgroups. The units in the same subgroup t
an identical orbit while the two subgroups behave indep
dently. This is the double-value generalized synchroniza
state@16#. The subsystem Lyapunov exponentLy calculated
according to the equation

Ly5 lim
N→1`

1

N (
n51

N

lnuz~xn!d f~yn!/dynu ~2!

is shown in Fig. 2~a!. One can see thatLy is negative on both
sides of the transition and is far away from the zero-va
line. It means that here the subsystemyn is generalized syn-
chronous to subsystemxn on both sides of the bifurcation
and the transition is directly from one synchronized state
another@22#.

To characterize the transition quantitatively, here we
fine a quantitysn that measures the average distance am
an ensemble of trajectoriesyn

( i ) starting from different initial
conditions,

sn5A1

L (
i 51

L

~yn
( i )2 ȳn!2, ~3!

where ȳn51/L( i 51
L yn

( i ) , i , and L are the index and tota
number of trajectories, respectively.sn would be zero for the
single-value synchronized state and nonzero for the dou
value one. Thus, it can be used as an order parameter fo
transition studied here. The average value ofsn on increasing
the parameterb is shown in Fig. 2~b!. At b.3.08, it has a
sudden jump from zero to a nonzero finite value, i.e.,
transition encountered here is a discontinuous one. Th
different from the supercritical blowout bifurcation wheresn
increases linearly from zero as the system enters the de
chronized state@11#. We calculated also the basin of attra
tion of the attractor, it is not riddled as for the subcritical ca
of blowout bifurcation.

To unfold this complex transition of the chaotic set, w
consider the unstable periodic orbits~UPOs! embedded in it

FIG. 2. ~a! The subsystem Lyapunov exponentLy and ~b! the
average value ofsn with increasing the parameterb.
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@17#. As an example, first consider the period-2 UPO of t
subsystemxn . The bifurcation diagram for this UPO on in
creasingb is shown in Fig. 3. A bifurcation from the one-to
one response to the two-to-one response in they subsystem
occurs atb.3.096. Due to the period-2 modulation ofzn in
they subsystem, the period-doubling bifurcation at zero co
pling is rendered imperfect now. At the critical valueb
.3.096, a pair of branches are created via a saddle-n
bifurcation and the previously existing one is continuou
stable through the bifurcation, and the new branches app
ing at the bifurcation are at a finite distance from the exist
one. This imperfect bifurcation is the right origin of the di
continuous transition encountered for the chaotic set. O
should also note that the newly created pair of branches h
a different number of unstable directions: one is a sad
having one unstable direction while the other is a repe
having two unstable directions.

At the limit of zero coupling, the subsystemyn is decou-
pled fromxn , and all the UPOs on the chaotic set ofxn have
their period-doubling bifurcation in they direction at the
same value ofb. For nonzero coupling, the modulation inzn
of y subsystem has two effects: The first one is that it rend
the period-doubling bifurcation imperfect as mention
above. The second is that each UPO encounters the bifu
tion at different values of the parameterb. Therefore, there is
a bifurcation interval for the parameterb lasting from the
bifurcation point of the first UPO to that of the last one. F
b in this interval, the attractor of the system is of unstab
dimensional variability~UDV! @13#. Another important fea-
ture of a system with parameter in this interval is that it
always single-value synchronized. If you cut the attractor a
certain placex5x0, you get always one single point on th
intersection. However, if the position of the intersection
shifted a tiny distanced, the difference between the tw
intersection pointsy(x0) andy(x01d) can be finite even as
d goes to zero. This is due to the fact thatx0 andx01d may
be on two UPOs which bifurcate in they direction at differ-
ent values ofb. According to the definition given in Ref
@23#, here the generalized synchronization isnondifferential
in nature. Actually, nondifferential is not an exclusive featu

FIG. 3. ~a! The bifurcation diagram for the period-2 UPO. Th
stable branches are in bold line while the unstable one is in
line. ~b! The position of stable branches for two cases withb
53.05 below the bifurcation (s) and with b53.1 beyond the bi-
furcation (!).
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of the single-value synchronized state in the bifurcat
interval. Due to the same reason that UPOs bifurcate
the y direction at different times, the double-value synch
nized state beyond the transition is also nondifferential.
illustrate this fact, we show in Fig. 4 the evolution of th
intersection atx050.32 with increasingb and the case for
interactionux2x0u,d with d51024. Owing to the nondif-
ferential character of the attractor, the points recorded in
second case scatter greatly and the diagram cannot eve
distinguished from the one shown in Fig. 1. The nondiff
ential feature can also be seen from the first case, where
intersection point has intermittent jumps with increasingb.

Now let us consider the relation between the bifurcat
of the UPOs and the transition for the chaotic set. In
double-value synchronization regime, the system has two
existing attractors. The boundary of their basins of attract
is a repeller set formed by unstable branches from the bi
cation of all UPOs. On decreasing the parameterb, this re-
peller set approaches the attractors gradually. At the mom
when the distance between the attractor and the repeller s
zero, two attractors suddenly expand in size and merge
one. Following similar arguments given above about the
tractor, one can get to know that the repeller set is also n
differential in thex direction. The nondifferential property o
the attractor and the repeller set makes the definition of
distance between them quite complex. One natural prop
is based on the UPO decomposition: For each UPO one
get a distance between its stable branch and the uns
branch. The minimal value of these distances for all UPO
the distance between the chaotic attractor and the b
boundary ~repeller! set. On decreasing the parameterb,
stable branches and unstable ones approach gradually.
certain value ofb, one pair of them belonging to a certa
UPO hit and annihilate each other. Then, a hole opens on
basin boundary and two attractors are no longer separ
and merge into one. This is just the situation reported
@19,18#. The collision of the attractor and the boundary se
a local event, which happens at only the location of the p

FIG. 4. The bifurcation diagram ofy on the intersectionx0

50.32 and forux2x0u,1024. The dashed line marks the transitio
from the single-value synchronized state to the double-value o
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of branches holding the minimal distance. This is the rig
reason why the characteristic time for this crisis is extrem
long when comparing to the normal case of crisis@20#.

However, this is not the only case encountered here
general. The reason is as follows. Consider an intersectio
the attractor at a certain placex5x0 with x0 on an UPOA.
One can get a distanced1 between the unstable branch an
stable branch of this UPO. Now consider another intersec
at x5x01d which is on a certain UPOB. One gets anothe
distanced2 similar to d1 for A. In addition to these two
distances, there are two more distancesd1,28 which are impor-
tant for our problem: the distance between unstable
stable branches from different UPOs~see Fig. 5!. In the limit
d→0, the four distances become identical if the attractor a
the boundary set are both smooth. Then, one encounter
scenario of the transition mentioned above. For the cas
nondifferential attractor and boundary set, these four are
general different. If the minimal one of them is fromd1,2,
one encounters again the scenario given above. Otherw
an unstable branch from a certain UPO will collide with
stable branch from the other UPO before any pair
branches from the same UPO hit each other together: A
result of this collision, two attractors suddenly merge into
big one. Here, due to the nondifferential nature of the attr
tor and basin boundary~repeller! set, an alternative scenari
of the attractor-repeller collision crisis is expected. Since
only essential factor leading to the nondifferential is that
UPOs bifurcate at different parameter values, nondifferen
character is expected to be a common feature for cha
attractors about the transition. And consequently, the s
nario proposed here is expected to be a generic one for
transition between synchronized states. Actually, our p
posal for the distance among two fractal sets is quite gen
and is also applicable to strange nonchaotic sets.

Finally, we would like to outline the main results of th
paper.

~1! We show an example of the transition between s
chronized states.

~2! This transition is a discontinuous one and is differe
from the synchronization-desynchronization transition
many respects.

~3! By using the unstable periodic orbits~UPOs! decom-
position method, we show that the synchronized state
their basin boundary are nondifferential in the parameter

.

FIG. 5. The scheme for the definition of distances among
stable branch (s) and stable branch (d) of two UPOs atx5x0 and
x5x01d.
3-3
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gime about the transition. This nondifferential character
the attractor is expected to be generally found for the tra
tions between synchronized states.

~4! Based on the nondifferential nature of the attractor a
repeller set, we propose a mechanism for the attrac
repeller collision crisis. It is expected to be a generic s
r-

ys
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nario for the transition among fractal~chaotic or strange non
chaotic! sets.
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