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Transition among synchronized states mediated by attractor-repeller collision crisis

Bambi HWt? and H. L. Yang*
IDepartment of Physics and Center for Nonlinear Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
2Departments of Physics, University of Houston, Houston, Texas 77204-5005
(Received 15 January 2002; published 26 June 2002

We studied the transition from a single-value generalized synchronization state to a double-value one in a
unidirectionally coupled two-dimensional map system. It is found that this discontinuous transition is mediated
by the attractor-repeller collision crisis and is different from the blowout bifurcation in many respects. By using
the unstable periodic orbits decomposition method, it is shown that the attractor is generally nondifferential in
the parameter regime about the transition. Based on the nondifferential character of the attractor, we propose a
mechanism for the attractor-repeller collision crisis.
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Synchronization of mutually coupled units is found abun-x,, and it exhibits a cascade of period-doubling bifurcations
dant in natural situations such as flashing of fire fliB§  on increasing parametér It is expected that with weak cou-
pacemaker cells of the hedf], etc., and laboratory studies pling, there should be a certain transition corresponding to
such as laser dynamid§], electric circuits[8], chemical the period-doubling bifurcation. For the simplicity of illus-
reactiong[1], and secret communicatid2]. In the past de- tration, here we focus our attention on the parameter regime
cades study on chaotic synchronizati@4] attracted a lot about the first period-doubling bifurcation. The same mecha-
of research interest and became one of the hottest subfieldésm should work at all the other period-doubling bifurca-
of nonlinear dynamics. tions. In a former study on a randomly driven system we

In the literature, the transition from a synchronized statfound that the period-doubling bifurcation is replaced by a
to a desynchronized one, named blowout bifurcafi®h is  crisis [20] named tunnel crisi§14]. For the current chaoti-
already well studied. It is found that, about this symmetry-cally driven case, the complex internal structure of the driv-
breaking bifurcatiorf10], interesting phenomenon including ing signal, i.e., the large number of unstable periodic orbits
on-off intermittency[11], riddled basin of attractio12], embedded in the chaotic attrac{dr7], makes the dynamics
and unstable dimension variabilift3] appear. On the other richer and interesting.
hand, another transition frequently met in synchronization We first calculate the bifurcation diagram gf with a
study is nearly ignored, i.e., the transition between synchro=0.3 (Fig. 1). On increasing the parametbr a one-band
nized state§14,15. For this case, the synchronous manifold attractor bifurcates to a two-band one at a certain valu of
is transversely stable on both sides of the transition. ThereAs a standard method used in the study of generalized syn-
fore, it should be totally different from the synchronization- chronization, we study an ensemble of identicalibsystems
desynchronization transition, which takes place when thelriven by the same chaotic signal. Below the bifurcation,
synchronous manifold loses its transverse stability. an ensemble of identicglsubsystems starting from different

In this paper, we show a transition from a single-valueinitial conditions[21] collapse to a single trajectory finally,

generalized synchronization state to a double-value[d6k  although they behave chaotically with time going on. This is
in a unidirectionally coupled map system. By using the un-the single-value generalized synchronization state. Beyond
stable periodic orbit decomposition methidd’], it is shown  the bifurcation, the large number of identigalsubsystems
that the attractors are nondifferential about the transition.
Owing to the nondifferential character, a different scenario of 1
the attractor-repeller collision crisis, from the one reported in
[18,19, is proposed. We argue that this scenario is generic
for transitions among chaotic states.

Our system is the parametrically driven logistic map

XnJrl:/*l’f(Xn)!

&)

Yn+1= Z(Xn)f(yn)u

where f(x)=x(1-Xx), z(x)=(ax+b), ©=3.9999,a, and
b are positive real constants. In the zero-coupling limit
—0, they subsystem is decoupled from the chaotic driving " .
FIG. 1. (a) The bifurcation diagram of, with a=0.3; (b) the
single-value synchronized statelat 2.9, and(c) the double-value
* Author to whom correspondence should be addressed. synchronized state &t=3.1.
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b stable branches are in bold line while the unstable one is in thin

FIG. 2. (a) The subsystem Lyapunov exponely and (b) the line. (b) The positi_on of_stable branc_hes for two cases V\bt_h
average value of, with increasing the parameter =3.05 below the bifurcation®) and withb=3.1 beyond the bi-
furcation (x).

split into two subgroups. The units in the same subgroup tak . . .
an identical orbit while the two subgroups behave indepenfﬂ]' As an example, first consider the period-2 UPO of the

dently. This is the double-value generalized synchronizatioﬁlJbsyStenX“' The bifurcation diagram for this UPQ on in-

state[16]. The subsystem Lyapunov exponen calculated g?leeailansg)olr?szh?owtrr:(Ient\l/:vlg-.tg-.opr\w é)l:lé;czi;fsnefgombtehfsOgtee-r;[10-
according to the equation P p nytsabsy

occurs ath=3.096. Due to the period-2 modulation of in

they subsystem, the period-doubling bifurcation at zero cou-
N pling is rendered imperfect now. At the critical valle

nzl In[z(x,)d f(yn)/dy,| (20 ~3.096, a pair of branches are created via a saddle-node
bifurcation and the previously existing one is continuously

stable through the bifurcation, and the new branches appear-

IS shown in Fig. Ea)_._One can see thatt, is negative on both ing at the bifurcation are at a finite distance from the existing
sides of the transition and is far away from the zero-value

line. It means that here the subsystgfris generalized syn- one. This imperfect bifurcation is the right origin of the dis-

h ‘ bsvst both sid f the bif " continuous transition encountered for the chaotic set. One
chronous 1o Subsystemy, on both sides ot Ineé bilurcatlion 14 150 note that the newly created pair of branches have
and the transition is directly from one synchronized state t

another22] Q different number of unstable directions: one is a saddle
S . o having one unstable direction while the other is a repeller
To characterize the transition quantitatively, here we de g P

) ; . having two unstable directions.
fine a quantitys,, that measures the average distance amon g

- 9 At the limit of zero coupling, the subsysteyy is decou-
. ) . . o pling, the subsysteyn is decou
22@?5;:2“6 of trajector|ey$ starting from different initial pled fromx,,, and all the UPOs on the chaotic setxgfhave

their period-doubling bifurcation in thg direction at the
same value ob. For nonzero coupling, the modulationzp
L . of y subsystem has two effects: The first one is that it renders
=\ 2 (W -yn)? (3) the period-doubling bifurcation imperfect as mentioned
=1 above. The second is that each UPO encounters the bifurca-
o ) tion at different values of the parameterTherefore, there is
wherey,=1/L=F vy, i, and L are the index and total a bifurcation interval for the parametérlasting from the
number of trajectories, respectivesy, would be zero for the  bifurcation point of the first UPO to that of the last one. For
single-value synchronized state and nonzero for the doublés in this interval, the attractor of the system is of unstable
value one. Thus, it can be used as an order parameter for tltmensional variabilityUDV) [13]. Another important fea-
transition studied here. The average valusobn increasing ture of a system with parameter in this interval is that it is
the parameteb is shown in Fig. 2b). At b=3.08, it has a always single-value synchronized. If you cut the attractor at a
sudden jump from zero to a nonzero finite value, i.e., thecertain placex=Xx,, you get always one single point on the
transition encountered here is a discontinuous one. This igtersection. However, if the position of the intersection is
different from the supercritical blowout bifurcation whese  shifted a tiny distance’, the difference between the two
increases linearly from zero as the system enters the desyimtersection pointy(xy) andy(xy+ 8) can be finite even as
chronized stat¢11]. We calculated also the basin of attrac- § goes to zero. This is due to the fact thkgtandx,+ 6 may
tion of the attractor, it is not riddled as for the subcritical casebe on two UPOs which bifurcate in thedirection at differ-
of blowout bifurcation. ent values ofb. According to the definition given in Ref.
To unfold this complex transition of the chaotic set, we[23], here the generalized synchronizatiomindifferential

consider the unstable periodic orbi{tdPO9 embedded in it in nature. Actually, nondifferential is not an exclusive feature
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FIG. 5. The scheme for the definition of distances among un-
stable branch@®) and stable branch®) of two UPOs atx=x, and
X=X+ 6.

0 I
2.5 3 35
b

FIG. 4. The bifurcation diagram of on the intersectiorx,  Of branches holding the minimal distance. This is the right
=0.32 and folx—x,| <10~ *. The dashed line marks the transition r€ason why the characteristic time for this crisis is extremely
from the single-value synchronized state to the double-value one.long when comparing to the normal case of cr[€8].

However, this is not the only case encountered here, in
general. The reason is as follows. Consider an intersection of
of the single-value synchronized state in the bifurcationthe attractor at a certain plaae=Xo With xo on an UPOA.

.One can get a distanah between the unstable branch and

mterva!. Dge to the same reason that UPOs bifurcate "Ltable branch of this UPO. Now consider another intersection
they direction at different times, the double-value synchro-atx:xO+ 5 which is on a certain UP@®. One gets another

nized state beyond the transition is also nondifferential. Todistancedz similar to d; for A. In addition to these two

@Ilustrate_this fact, we sh_ow_in Fig._4 the evolution of the distances, there are two more distandeswhich are impor-
intersection at,=0.32 with mcriasmga_ and the case for yan for our problem: the distance between unstable and
interaction|x—xo| <& with 6=10"". Owing to the nondif- 2116 branches from different UPQsee Fig. 5. In the limit
ferential character of the attractor, the points recorded in th%—»O, the four distances become identical if the attractor and
second case scatter greatly and the diagram cannot even #g poundary set are both smooth. Then, one encounters the
distinguished from the one shown in Fig. 1. The nondiffer-scenario of the transition mentioned above. For the case of
ential feature can also be seen from the first case, where thfndifferential attractor and boundary set, these four are in
intersection point has intermittent jumps with increasimg  general different. If the minimal one of them is frodh ,,

Now let us consider the relation between the bifurcationone encounters again the scenario given above. Otherwise,
of the UPOs and the transition for the chaotic set. In thean unstable branch from a certain UPO will collide with a
double-value synchronization regime, the system has two catable branch from the other UPO before any pair of
existing attractors. The boundary of their basins of attractiorbranches from the same UPO hit each other together: As a
is a repeller set formed by unstable branches from the bifurresult of this collision, two attractors suddenly merge into a
cation of all UPOs. On decreasing the paramétethis re-  big one. Here, due to the nondifferential nature of the attrac-
peller set approaches the attractors gradually. At the momemdr and basin boundariyepelle) set, an alternative scenario
when the distance between the attractor and the repeller seta$ the attractor-repeller collision crisis is expected. Since the
zero, two attractors suddenly expand in size and merge intonly essential factor leading to the nondifferential is that the
one. Following similar arguments given above about the atJPOs bifurcate at different parameter values, nondifferential
tractor, one can get to know that the repeller set is also noreharacter is expected to be a common feature for chaotic
differential in thex direction. The nondifferential property of attractors about the transition. And consequently, the sce-
the attractor and the repeller set makes the definition of theario proposed here is expected to be a generic one for the
distance between them quite complex. One natural proposaiansition between synchronized states. Actually, our pro-
is based on the UPO decomposition: For each UPO one cagmosal for the distance among two fractal sets is quite general
get a distance between its stable branch and the unstabded is also applicable to strange nonchaotic sets.
branch. The minimal value of these distances for all UPOs is Finally, we would like to outline the main results of this
the distance between the chaotic attractor and the basjpaper.
boundary (repelley set. On decreasing the parametgr (1) We show an example of the transition between syn-
stable branches and unstable ones approach gradually. Atchronized states.
certain value ofb, one pair of them belonging to a certain  (2) This transition is a discontinuous one and is different
UPO hit and annihilate each other. Then, a hole opens on thieom the synchronization-desynchronization transition in
basin boundary and two attractors are no longer separatedany respects.
and merge into one. This is just the situation reported in (3) By using the unstable periodic orbitd PO decom-
[19,18. The collision of the attractor and the boundary set isposition method, we show that the synchronized state and
a local event, which happens at only the location of the paitheir basin boundary are nondifferential in the parameter re-
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gime about the transition. This nondifferential character ofnario for the transition among fractahaotic or strange non-
the attractor is expected to be generally found for the transiehaotig sets.
tions between synchronized states.

(4) Based on the nondifferential nature of the attractor and This work was supported in part by the Research Grant
repeller set, we propose a mechanism for the attractorl€ouncil (RGC) and the Hong Kong Baptist University Fac-
repeller collision crisis. It is expected to be a generic sceulty Research GranfFRG).
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